Cnidarians

A Detailed Approach

Cnidarian Characteristics

- 1. Radial or biradial symmetry
- 2. Diploblastic, tissuelevel organization
- Gel-like mesogleabetween epiderm & gastroderm

• Bi - 2

- Diplos double
- Blastos bud
- Meso middle
- Glia glue
- Epi upon
- Gaster stomach
- Derma skin

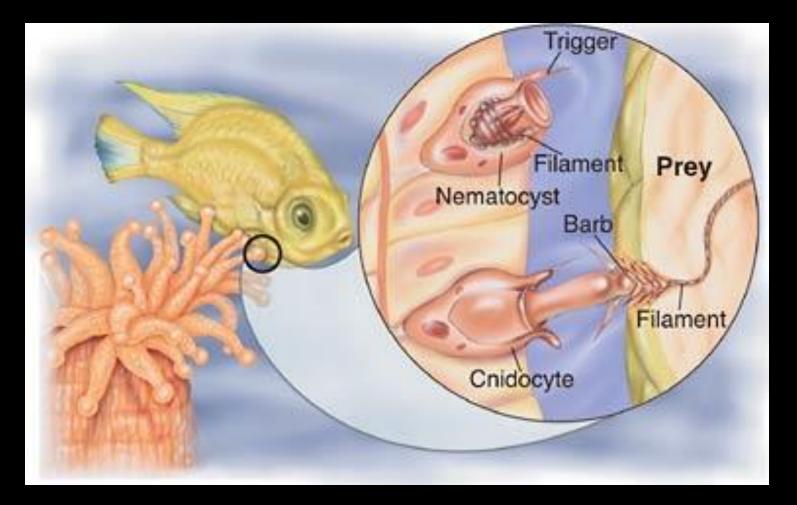
Cnidarian Characteristics

- 4. Gastrovascular cavity
- 5. Nerve Net
- 6. Cnidocytes (specialization)

 Vasculum – small vessel

• Knide - nettle

Cnidarian Body Plan

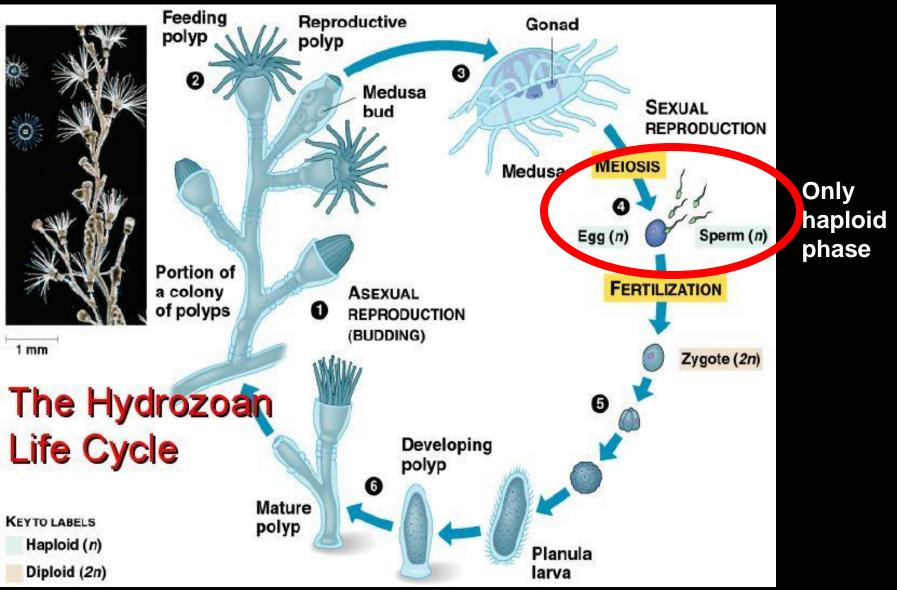

- Symmetry
 - Radial (pie slices)
 - Biradial
 - Mirrored across a middle plane
 - No differentiation
 - Mouth end oral end
 - Other end <u>aboral end</u>

The Body Wall

- 2 embryological layers
 - Epidermis from ectoderm, outer layer
 - Gastrodermis from endoderm, inner layer
 - Both specialize for protection, eating, movement, etc...
- Mesoglea
 - Not alive

- Cells originate in epidermis or gastrodermis

Nematocysts



Stinging Structure

- Cninoblast early cnidocytes
- Cnidocytes stinging cells
 - Cnidae (plural) cnida (singular)
 - discharged organelle (over 20 types)
 - Nematocyst a common type
 - Operculum lid/flap
 - Cnidocyl Modified cilia (trigger)
 - <u>https://www.youtube.com/watch?v=</u> <u>Pu_ijC8HFRU</u>

- Knide nettle
- Blastos germ
- Cilium hair
- Kytos hollow vessel
- Operculum cover
- Nema thread
- Kystis bladder

Alternation of Generations

Alternation of Generations

- Both body types
- Polyp is (usually)
 - Asexual
 - Sessile
- Medusa
 - Dioecious
 - Motile, free swimming
 - More mesoglea than polyp

 Polypous – many footed

- Di two
- Oikos house

Digestion

- Gastrovascular Cavity one opening
- Helps
 - Digestion
 - Gas exchange
 - Excretion
 - Gamete release
- All through mouth

- Gaster stomach
- Vasculum small vessel

Digestion

- Small crustaceans or fish get paralyzed
- Contractile cells make tentacles shorten
- Gastrodermal efforts
 - gland cells secrete mucus and enzymes (make food into "soup")
 - Nutritive-muscular cells phagocytize "soup"
 - Food vacuoles complete digestion

Phaegin – eat

Kytos – hollow vessel

Excretion

 Nutritive-muscular cells move materials out (and in) through peristalsis (alternating compressions)

Locomotion

- Polyps
 - Somersaulting
 - Inchworm
- Medusae
 - Follow the current for horizontal motion
 - Contract for vertical motion

Nerve Cells

- Primitive
- Below epidermis, near mesoglea
- Interconnect to form 2D nerve net
- Movement based on strength of stimulus/ nerve impulse

Reproduction

- Mostly dioecious
- Sperm and eggs may be
 - released outward
 - into gastrovascular cavity
 - Retained within body until fertilization

Early development

- Blastula forms early
- Interior fills with cells that will become gastrovascular cavity
- Embryo elongates to form planula (freeswimming larva)

Planus – flat

Class Hydrozoa

- Most are marine
- Only cnidarians w/ freshwater members
- Distinguishing traits
 - 1. Nematocysts only in epidermis
 - 2. Gametes are epidermal & released out
 - 3. Mesoglea is mostly acellular

Nema – thread

Kystis - bladder

Hydrozoans

- Most live in colonial polyps
- Individuals specialized for
 - Feeding (gastrozooid or hydranth)
 - Tentacles for feeding
 - Secretes protein and chitin skeleton (perisarc)
 - Producing medusae (gonozooid)
 - Defending the colony

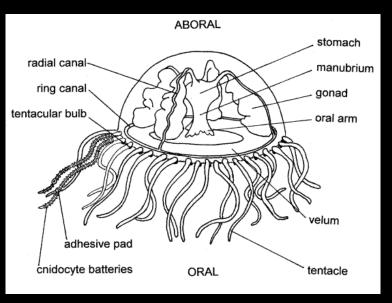
Zoon – animal

Hydra – water

Anthos – flower

Peri – around

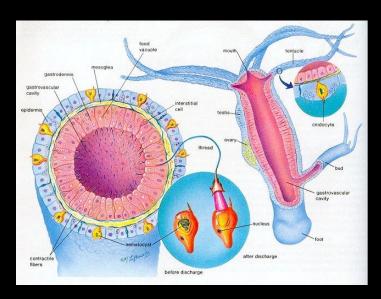
Sarx – flesh


Gono – offspring

Zooid – individual animal

Gonionemus anatomy

- Medusa stage predominates
- Typical hydrozoan
 medusae biology
 - Lives attached to seaweed
 - <u>Margin</u> (inner rim of bell) curves in to form lip called <u>velum</u> which helps project water


Velum – veil, covering

Hydra

- Hangs under floating plants in clean freshwater systems
- No medusa stage
- Reproduces asexually and sexually

Large Hydrazoan colonies

- Order Siphonophora
- Polypoid
 - Dactylozooids predators
 - Digesters
- Medusoid
 - Swimming bells
 - Sac floats
 - Oil floats
 - Gonads

- Leaflike defensive structures

Class Staurozoa

- All marine, found in colder water
- 8 tentacle clusters at mouth end
- Aboral end attaches to rock or seaweed
- Sexual reproduction creates crawling
 planula

Scyphozoan Danger

- Many are harmless
- Some are dangerous
 - Mastigias quinquecirrha (stinging nettle)
 - Avoid
 - Helmet shape
 - Long tentacles
 - Fleshy lobes

Aurelia

- Common on both North American coasts
- Margin of medusa has ring of short tentacles
- Mouth leads to 4 gastric pouches which contain cnidocyte-laden gastric filaments
- Radial canals lead from pouches to ring canal

Aurelia feeding

Plankton feeder

Drops, resting, catching Gathers plankton as it falls Manubrium feeds

- Cilia move food to margin
- Oral lobes scrape food
- Cilia on oral lobes carry food to mouth

Scyphozoan reproduction

- Dioecious
- 2 gonads per gastric pouch (8 total)
- Gametes released to gastric pouches

- Sperm exit through mouth

- Eggs usually stay in body until fertilization

Class Cubozoa

- Cuboidal
- Tentacles hang from corners
- Polyps are very small

Cubozoan feeding

- Carnivores
- Hunt by injecting poison
- Tentacles pull food into mouth (1 min)
- Tentacles can stretch up to 10x

Cubozoan response

- Cubozoans have eyes
 - Small spots detect light
 - Larger spots contain cornea, lenses, and retinas
- Some possess dangerous nematocysts

Cubozoan Reproduction

- 1 pairing per year
 - 1. Male puts tentacles in female's bell
 - 2. Packets of sperm are passed along
 - 3. Fertilization occurs in female (eggs are occasionally released)
 - 4. Motile polyps (Planula)
 - 5. Matures into medusa

Class Anthozoa

- Colonial or solitary
- All marine
- Found at all depths
- No medusae
- No cnidocil (trigger)
- Anemones, stony and soft coral

Anthozoa

Different from hydrozoa

- Mouth of anthozoan leads to pharynx (throat)
- Membranes called mesenteries containing cnidocytes and gonads divide GV cavity into sections
- 3. Mesoglea contains amoeboid mesenchyme (middle infusion) cells

Anemones

- Lifestyle
 - Solitary
 - Symbiotic relationships
 - ex: hermit crab
 - Anemone gets mobility
 - Crab gets protection
 - Clownfish
 - Fish gets protection
 - Anemone is cleaned, may get extra food

Anemone Mesenteries

- Some attach to outer margin and pharynx
- Others attach only to outer margin
- Holes allow water circulation
- At bottom mesenterial filament
 - Cnidocytes
 - Siphonoglyph ciliated gullet for water movement
 - Gland cells for digestion
 - Cells that absorb nutrients

Anemone Response

- When threatened, anemones collapse by releasing water and closing up.
- Refilling the hydrostatic skeleton relies on gradual water uptake

Anemone Locomotion

- Limited
 - Glide on pedal disks
 - Crawl on sides
 - Walk on tentacles
 - "swim" by thrashing around
 - Float using gas bubble in folds of pedal disk

Anemone Feeding

- Eat invertebrates and fishes
- Tentacles draw food in
- Radial muscles open mouth

Anemone Reproduction

- Asexual
 - Pedal laceration Pedal disk breaks off
 - Transverse fission divide into 2
- Sexual
 - Monoecious or dioecious

Anemone Reproduction (sexual)

- Monoecious
 - Protandry
 - Male gametes made 1st
 - Avoid self fertilization
- Dioecious

Stony Coral reproduction

- Sexual like anemone
- Asexual
 - Budding
 - Makes members of colony

Stony Coral symbiosis

- Photosynthetic dinoflagellate zooxanthellae
 - Provide organic carbon
 - Helps with CaCO₃ by
 - removes CO2
 - pH changes ppt CaCO3
- Coral metabolism
 - Provide nitrogen
 - Provide phosphorus

Dinos – whirling Flagellum – a whip Zoon – animal Xanthos - yellow

Stony Coral Environment

- 90 m depth limit (light related)
- Increased water temp can kill zooxanthellae (bleaching)

Octocorallian Corals

- Common in warm waters
- 8 pinnate (featherlike) tentacle
- 8 mesenteries
- 1 siphonoglyph
- Internal skeleton of protein or CaCO₃.
- Sea fans, sea pens, sea whips, red corals, organ pipe corals